Quantencomputer werden mit zunehmender Größe und Komplexität undurchschaubar. Mit Methoden der mathematischen Physik ist es nun einem Team gelungen, aus zufälligen, Datensequenzen konkrete Zahlen abzuleiten, die als Maßstab für die Leistungsfähigkeit eines Quantencomputersystems dienen können.
Quantencomputer arbeiten bei sehr niedrigen Temperaturen, um Rauschen und unerwünschte Störungen zu minimieren. Mit einem neu entwickelten mathematischen Werkzeug ist es nun möglich, die Leistung eines Quantencomputers durch zufällige Testdaten zu bewerten und mögliche Fehler zu diagnostizieren.
An der Arbeit mit Quantencomputer, die nun in Nature Communications veröffentlicht ist, waren Experten des Helmholtz-Zentrum Berlin, der Freien Universität Berlin, des Qusoft Forschungszentrum Amsterdam, der Universität Kopenhagen sowie des Technology Innovation Institute Abu Dhabi beteiligt.
Mit Quantencomputern lassen sich insbesondere Quantensysteme deutlich effizienter berechnen und zum Beispiel Probleme in der Materialforschung lösen. Je größer und komplexer jedoch Quantencomputer werden, desto weniger lassen sich die Prozesse durchschauen, die zum Ergebnis führen. Um solche Quantenoperationen zu charakterisieren und die Fähigkeiten von Quantencomputern mit der klassischen Rechenleistung bei denselben Aufgaben fair zu vergleichen, werden daher passende Werkzeuge gebraucht. Ein solches Werkzeug mit überraschenden Talenten hat nun ein Team um Prof. Jens Eisert und Ingo Roth entwickelt.
Roth, der aktuell am Technology Innovation Institute in Abu Dhabi eine Gruppe aufbaut, erläutert: „Aus den Ergebnissen zufällig gewählter Experimente können wir mit mathematischen Methoden nun viele verschiedene Zahlen extrahieren, die zeigen, wie nah die Operationen im statistischen Mittel an den gewünschten Operationen sind. Damit kann man aus den gleichen Daten viel mehr lernen als zuvor. Und zwar – das ist das Entscheidende – wächst die benötigte Datenmenge nicht linear sondern nur logarithmisch.“ Dies konnte das Team sogar mathematisch beweisen. Konkret bedeutet das: Um hundertmal so viel zu lernen, werden nur doppelt so viel Daten gebraucht. Eine enorme Verbesserung.
Eisert, der eine gemeinsame Forschungsgruppe zu theoretischer Physik am Helmholtz-Zentrum Berlin und der Freien Universität Berlin leitet, sagt:
„Es geht hier um das Benchmarking von Quantencomputern. Wir haben gezeigt, wie man mit randomisierten Daten solche Systeme kalibrieren kann. Das ist eine sehr wichtige Arbeit für die Entwicklung von Quantencomputern.“
Mit seiner mehr als 200-jährigen Tradition in den optischen Technologien, seiner stark wissenschaftlichen Basis und der hohen Anzahl an spezialisierten Unternehmen ist die Hauptstadt einer der führenden europäischen Standorte in den Bereichen Optik, Photonik und Mikrosystemtechnik.
Als Schnittstelle zwischen verschiedenen Technologien bilden sie oft die Basis für innovative Produkte und Dienstleistungen, zum Beispiel in der Medizin- und Messtechnik oder der Energie- und Kommunikationstechnik.
Weitere Informationen zur wirtschaftlichen Entwicklung der Wachstumsbranchen in der Region und zur Wirtschafts- und Technologieförderung für Unternehmen, Investoren und wissenschaftliche Einrichtungen erhalten Sie bei:
Melanie Gartzke I melanie.gartzke(at)airport-region.de
Quelle: Pressemitteilung Helmholtz-Zentrum Berlin HZB „Quantencomputer: Gewissheit aus dem Zufall ziehen“, 29. August 2023